home *** CD-ROM | disk | FTP | other *** search
- ;;; -*-Scheme-*-
- ;;;
- ;;; From Kent Dybvig's book on Chez Scheme
-
- (define unify)
-
- (letrec
- ((occurs?
- (lambda (u v)
- (and (pair? v)
- (define (f l)
- (and (not (null? l))
- (or (eq? u (car l))
- (occurs? u (car l))
- (f (cdr l)))))
- (f (cdr v)))))
- (sigma
- (lambda (u v s)
- (lambda (x)
- (define (f x)
- (if (symbol? x)
- (if (eq? x u) v x)
- (cons (car x) (map f (cdr x)))))
- (f (s x)))))
- (try-subst
- (lambda (u v s ks kf)
- (let ((u (s u)))
- (if (not (symbol? u))
- (uni u v s ks kf)
- (let ((v (s v)))
- (cond
- ((eq? u v) (ks s))
- ((occurs? u v) (kf "loop"))
- (else (ks (sigma u v s)))))))))
- (uni
- (lambda (u v s ks kf)
- (cond
- ((symbol? u) (try-subst u v s ks kf))
- ((symbol? v) (try-subst v u s ks kf))
- ((and (eq? (car u) (car v))
- (= (length u) (length v)))
- (define (f u v s)
- (if (null? u)
- (ks s)
- (uni (car u)
- (car v)
- s
- (lambda (s) (f (cdr u) (cdr v) s))
- kf)))
- (f (cdr u) (cdr v) s))
- (else (kf "clash"))))))
- (set! unify
- (lambda (u v)
- (uni u
- v
- (lambda (x) x)
- (lambda (s) (s u))
- (lambda (msg) msg)))))
-
- (print (unify 'x 'y))
- (print (unify '(f x y) '(g x y)))
- (print (unify '(f x (h)) '(f (h) y)))
- (print (unify '(f (g x) y) '(f y x)))
- (print (unify '(f (g x) y) '(f y (g x))))
-